

Embedded Systems Week

CASES: International Conference on Compilers, Architectures, and Synthesis for Embedded Systems

Accelerating Large-Scale Graph Neural Network Training on Crossbar Diet

Chukwufumnanya Ogbogu[†], Aqeeb Iqbal Arka[†], Biresh Kumar Joardar^{*}, Janardhan Rao Doppa[†], Hai (Helen) Li^{*}, Krishnendu Chakrabarty^{*}, Partha Pratim Pande[†] Washington State University[†], Duke University^{*}

Outline

- Introduction:
 - ML models: Graph Neural Networks (GNN)
 - Architectures for GNN training & Inference
- Motivation:
 - ReRAM-based Process-in-memory (PIM) Computing
- Background & Overview:
 - GNN Training
 - 3D PIM for GNNs
- Methodology & Related work:
 - Lottery Ticket Pruning (LTP)
 - Crossbar-aware Pruning (CAP)
 - DietGNN Technique.
- Results
- Conclusion

2

Introduction

- Training machine learning (ML) models at the edge can address data privacy/security concerns.
 - Federated Learning Applications*
- ML Models are large (Billions of params.)
- Memory bandwidth and power constraints of Edge devices. ('memory-wall')
- Solutions?
 - Model Compression methods: **Pruning**, Quantization etc.
 - Process-in-memory (PIM) computing.

3

Introduction: Graph Neural Networks (GNN)

- Non-Euclidean structured data.
- Graph Convolution Layers
 - Learns features through neighborhood expansion

Why not GPUs?

- GNN training is highly compute- and data-intensive.
- GPUs are not optimized for GNN training
 - High Area & Power Requirements.
 - Low performance per watt (Energy efficiency).
 - Limited Memory Bandwidth.
- Alternative Computing Paradigms?

Motivation: Process-in-memory Computing

(a) Multiply-Accumulate operation

(b) Vector-Matrix Multiplier

ReRAM-based PIM
 Architectures

- ReRAM crossbars are natural multipliers
 - Energy Efficient
 - O(1) time
 - > 100 × computation speed-up

Background: GNN Training

• Graph Data:

- *N*×*N* sparse adjacency Matrix (*A*)
- Node-level feature vectors (X)

• GNNs:

- Multiple Layers (L) with weights $W^{(l)}$
- High amount of on-chip communication.
- Communication-intensive Vertex & Edge computation. (many-one)

GNN training on 3D PIM Architecture

- 3D ReRAM-based PIM Architecture
 - Area Efficency
 - High Communication Bandwidth
 - Shorter interconnect
- High on-chip communication traffic can be addressed.

- GNNs are over-parameterized (millions / billions of weights)
- Model Compression techniques: Pruning

Methodology: Lottery Ticket Pruning (LTP)

- 1. Randomly initialize weights (W_i)
- 2. Train network, to arrive at (W_T)
- 3. Prune p% of weights in W_T
- 4. Reset remaining weights to initial values in W_i , and Repeat

Iterative Magnitude Pruning with Rewinding

Frankle et al., 2019 Viz: @RobertTLange

Related Work

- LTP & Unified Graph Sparsification (UGS)
 - Unstructured pruning, High Sparsity
 - Low Energy & Area Savings

- Existing Crossbar-Aware Pruning (CAP)
 - Marginal reduction in Energy and Area cost.

Methodology: DietGNN Framework

Algorithm 1. Pruning with DietGNN

Input: GNN model, crossbar structure, prune percentage p

Output: Pruned GNN model or winning ticket

Algorithm:

 1:
 Initialize: $W^l \leftarrow W_{initial}$;

 2:
 Partition W^l into blocks (B^l) of size $c \times \left(c * \frac{b}{B}\right)$

 3:
 While itr < n:

 4:
 Train for E epochs

 5:
 Prune p% of B^l based on average magnitude

 6:
 Reinitialize remaining weights with $W_{initial}$

 7:
 Return Pruned Model (Hardware-friendly winning ticket)

- DietGNN achieves:
 - Significant reduction in Peripheral Circuit Area & Energy overhead
- Models can be reused multiple times

Experimental Setup

- Five benchmark realworld graph datasets: PPI, Reddit, Amazon2M, Flickr, and Yelp for the performance evaluation
- Graph Convolution
 Networks (GCNs)

	4 planar tiers, 9 cores per tier, 4 tiles per core						
	ReRAM Tile		96-ADCs (8-bits), 12x128x8 DACs (1-bit), 96 crossbars, 128x128 crossbar size, 10MHz, 2-bit resolution				
GNN DATASET STATISTICS							
1	Dataset		# of lodes	# Ed	# of Edges		# of Features
	PPI	56,944		818	818,716		50
	Reddit	232,965		11,606,919		4	602
A	mazon2M	1 2,449,029		61,859,140		4	100
	Flickr	ckr 89,250		899,756		3	500
	Yelp 716,84		6,847	13,945819		3	300

ARCHITECTURAL SPECIFICATIONS

Results: Accuracy vs Sparsity

- 128×128 crossbar size is the sweet spot in the sparsity-area-energy trade-off.
- Amazon2M Accuracy vs Sparsity
 - Up to 90% Sparsity with 1% accuracy drop constraint.

Results: Accuracy and Sparsity

- DietGNN high sparsity like with LTP
- < 1% accuracy loss constraint

Results: Area and Energy

• DietGNN achieves >95% area and Energy reduction.

Results: Computation & Communication Delay

- 41.5% communication delay reduction on Average.
- 58% average improvement in computation delay

Results: Overall System Performance

 DietGNN achieves 87% and 52% speed-up in overall execution time on average compared to Unpruned and CAP, respectively

Conclusion

- ReRAM-based PIM architectures are good candidates for accelerating large-scale GNN training at the edge.
- GNN models contain many parameters and training is compute and communication intensive. The DietGNN pruning method addresses this challenge.
- DietGNN framework achieves ${\sim}2.7{\times}$ speedup and $3.5{\times}$ energy efficiency for GNN training.

Thank You !

