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• Introduction:
• ML models: Graph Neural Networks (GNN)
• Architectures for GNN training & Inference

• Motivation:
• ReRAM-based Process-in-memory (PIM) Computing

• Background & Overview: 
• GNN Training
• 3D PIM for GNNs

• Methodology & Related work: 
• Lottery Ticket Pruning (LTP)
• Crossbar-aware Pruning (CAP)
• DietGNN Technique.

• Results
• Conclusion

Outline
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• Training machine learning (ML) models at the 
edge can address data privacy/security 
concerns.

• Federated Learning Applications*

• ML Models are large (Billions of params.)

• Memory bandwidth and power constraints of 
Edge devices. (‘memory-wall’)

• Solutions? 
• Model Compression methods:  Pruning, 

Quantization etc.
• Process-in-memory (PIM) computing.

Introduction

* https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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• Non-Euclidean structured data. 

• Graph Convolution Layers
• Learns features through neighborhood expansion

Introduction: Graph Neural Networks (GNN)

GNN
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• GNN training is highly compute- and 
data-intensive. 

• GPUs are not optimized for GNN 
training

• High Area & Power Requirements. 

• Low performance per watt (Energy 
efficiency). 

• Limited Memory Bandwidth. 

• Alternative Computing Paradigms? 

Why not GPUs?
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• ReRAM crossbars are natural multipliers
• Energy Efficient 
• O(1) time
• > 100 × computation speed-up 

Motivation: Process-in-memory Computing

• ReRAM-based PIM 
Architectures
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Background: GNN Training
• Graph Data:

• 𝑁×𝑁 sparse adjacency Matrix (𝐴)
• Node-level feature vectors (𝑋)

• GNNs: 
• Multiple Layers (L) with weights 𝑊(#)

• High amount of on-chip 
communication. 

• Communication-intensive Vertex & 
Edge computation. (many-one)
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GNN training on 3D PIM Architecture

• GNNs are over-parameterized (millions / 
billions of weights)

• Model Compression techniques: Pruning

• 3D ReRAM-based PIM Architecture
• Area Efficency
• High Communication Bandwidth
• Shorter interconnect 

• High on-chip communication traffic 
can be addressed.   
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Methodology: Lottery Ticket Pruning (LTP)

1. Randomly initialize weights (𝑊!)

2. Train network, to arrive at (𝑊")

3. Prune p% of weights in 𝑊"

4. Reset remaining weights to initial 
values in 𝑊! , and  Repeat 
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Related Work

• LTP & Unified Graph Sparsification
(UGS)

• Unstructured pruning, High Sparsity
• Low Energy & Area Savings

• Existing Crossbar-Aware Pruning 
(CAP)
• Marginal reduction in Energy and Area 

cost. 
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Methodology: DietGNN Framework
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• DietGNN achieves:
• Significant reduction in 

Peripheral Circuit Area & 
Energy overhead 

• Models can be reused multiple 
times



Experimental Setup

• Five benchmark real-
world graph datasets: 
PPI, Reddit, Amazon2M, 
Flickr, and Yelp for the 
performance evaluation 

• Graph Convolution 
Networks (GCNs)
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Results: Accuracy vs Sparsity

• 128×128 crossbar size is the sweet 
spot in the sparsity-area-energy 
trade-off.

• Amazon2M Accuracy vs Sparsity
• Up to 90% Sparsity with 1% accuracy drop 

constraint. 
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Results: Accuracy and Sparsity

• DietGNN high sparsity like with LTP  • <1% accuracy loss constraint  
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Results: Area and Energy

• DietGNN achieves >95% area and Energy reduction. 
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Results: Computation & Communication Delay

• 41.5% communication delay 
reduction on Average. 

• 58% average improvement in 
computation delay 
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Results: Overall System Performance

• DietGNN achieves 87% and 52% speed-up in overall 
execution time on average compared to Unpruned and CAP, 
respectively
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Conclusion

• ReRAM-based PIM architectures are good candidates for 
accelerating large-scale GNN training at the edge.

• GNN models contain many parameters and training is compute 
and communication intensive. The DietGNN pruning method 
addresses this challenge. 

• DietGNN framework achieves ~2.7× speedup and 3.5× energy 
efficiency for GNN training.

Thank You ! 18


